Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Int J Ment Health Addict ; : 1-20, 2022 Apr 25.
Article in English | MEDLINE | ID: covidwho-1813818

ABSTRACT

Young adults and racial/ethnic minorities report the worst mental health outcomes during the COVID19 pandemic, according to the Center for Disease Control (2020). The objectives of this study were (1) to identify common mental health symptoms among Latin American, US Hispanic, and Spanish college students, and (2) to identify clinical features predictive of higher post-traumatic stress symptoms (PTSS) among this population. The study sample included 1,113 college students from the USA, Mexico, Chile, Ecuador, and Spain who completed an online survey containing demographic questions and mental health screeners. Findings revealed higher scores of depression, suicidality, and PTSS compared to pre-pandemic levels and current scores by non-Spanish speaking college students; however, less than 5% of participants endorsed clinical levels of anxiety. After controlling for demographic profiles and sociocultural values, clinical symptoms of depression, loneliness, perceived stress, anxiety, and coping strategies explained 62% of the PTSS variance. Age, history of mental illness, perceived social support, and familism were not significant predictors. This sample of college students revealed higher mental health symptoms during the COVID-19 pandemic. The high prevalence of PTSS highlights the need to develop pragmatic, cost-effective, and culturally sensitive prevention and intervention strategies to mitigate these symptoms. Implications for college administrators and clinicians are discussed.

2.
Biosensors (Basel) ; 11(7)2021 Jul 01.
Article in English | MEDLINE | ID: covidwho-1323109

ABSTRACT

The feasibility of using Superparamagnetic Iron Oxide Nanoparticles (SPIONs) encapsulated by lipid-polymer nanoparticles as labels in lateral flow immunoassays (LFIA) was studied. First, nanoparticles were synthesized with average diameters between 4 and 7 (nm) through precipitation in W/O microemulsion and further encapsulated using lipid-polymer nanoparticles. Systems formulated were characterized in terms of size and shape by DLS (Nanozetasizer from Malvern) and TEM. After encapsulation, the average size was around (≈20 and 50 nm). These controlled size agglomerates were tested as labels with a model system based on the biotin-neutravidin interaction. For this purpose, the encapsulated nanoparticles were conjugated to neutravidin using the carbodiimide chemistry, and the LFIA was carried out with a biotin test line. The encapsulated SPIONs showed that they could be promising candidates as labels in LFIA test. They would be useful for immunomagnetic separations, that could improve the limits of detection by means of preconcentration.


Subject(s)
Immunoassay , Magnetic Iron Oxide Nanoparticles , Biosensing Techniques , Lipids , Polymers/chemistry
3.
Biomed Pharmacother ; 140: 111764, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1275156

ABSTRACT

Cocoa beans contain antioxidant molecules with the potential to inhibit type 2 coronavirus (SARS-CoV-2), which causes a severe acute respiratory syndrome (COVID-19). In particular, protease. Therefore, using in silico tests, 30 molecules obtained from cocoa were evaluated. Using molecular docking and quantum mechanics calculations, the chemical properties and binding efficiency of each ligand was evaluated, which allowed the selection of 5 compounds of this series. The ability of amentoflavone, isorhoifolin, nicotiflorin, naringin and rutin to bind to the main viral protease was studied by means of free energy calculations and structural analysis performed from molecular dynamics simulations of the enzyme/inhibitor complex. Isorhoifolin and rutin stand out, presenting a more negative binding ΔG than the reference inhibitor N-[(5-methylisoxazol-3-yl)carbonyl]alanyl-l-valyl-N~1~-((1R,2Z)-4-(benzyloxy)-4-oxo-1-{[(3R)-2-oxopyrrolidin-3-yl]methyl}but-2-enyl)-L-leucinamide (N3). These results are consistent with high affinities of these molecules for the major SARS-CoV-2. The results presented in this paper are a solid starting point for future in vitro and in vivo experiments aiming to validate these molecules and /or test similar substances as inhibitors of SARS-CoV-2 protease.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Cacao/chemistry , Peptide Hydrolases/metabolism , Plant Preparations/pharmacology , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Humans , Ligands , Molecular Dynamics Simulation
4.
Biochem Biophys Res Commun ; 537: 71-77, 2021 01 22.
Article in English | MEDLINE | ID: covidwho-987123

ABSTRACT

The sanitary emergency generated by the pandemic COVID-19, instigates the search for scientific strategies to mitigate the damage caused by the disease to different sectors of society. The disease caused by the coronavirus, SARS-CoV-2, reached 216 countries/territories, where about 20 million people were reported with the infection. Of these, more than 740,000 died. In view of the situation, strategies involving the development of new antiviral molecules are extremely important. The present work evaluated, through molecular docking assays, the interactions of 4'-acetamidechalcones with enzymatic and structural targets of SARS-CoV-2 and with the host's ACE2, which is recognized by the virus, facilitating its entry into cells. Therefore, it was observed that, regarding the interactions of chalcones with Main protease (Mpro), the chalcone N-(4'[(2E)-3-(4-flurophenyl)-1-(phenyl)prop-2-en-1-one]) acetamide (PAAPF) has the potential for coupling in the same region as the natural inhibitor FJC through strong hydrogen bonding. The formation of two strong hydrogen bonds between N-(4[(2E)-3-(phenyl)-1-(phenyl)-prop-2-en-1-one]) acetamide (PAAB) and the NSP16-NSP10 heterodimer methyltransferase was also noted. N-(4[(2E)-3-(4-methoxyphenyl)-1-(phenyl)prop-2-en-1-one]) acetamide (PAAPM) and N-(4-[(2E)-3-(4-ethoxyphenyl)-1-(phenyl)prop-2-en-1-one]) acetamide (PAAPE) chalcones showed at least one strong intensity interaction of the SPIKE protein. N-(4[(2E)-3-(4-dimetilaminophenyl)-1-(phenyl)-prop-2-en-1-one]) acetamide (PAAPA) chalcone had a better affinity with ACE2, with strong hydrogen interactions. Together, our results suggest that 4'-acetamidechalcones inhibit the interaction of the virus with host cells through binding to ACE2 or SPIKE protein, probably generating a steric impediment. In addition, chalcones have an affinity for important enzymes in post-translational processes, interfering with viral replication.


Subject(s)
Acetamides/chemistry , Acetamides/pharmacology , Angiotensin-Converting Enzyme 2/chemistry , Antiviral Agents/pharmacology , Chalcone/analogs & derivatives , Coronavirus 3C Proteases/chemistry , Molecular Docking Simulation , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/chemistry , Chalcone/chemistry , Chalcone/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Humans , Microbial Sensitivity Tests , SARS-CoV-2/chemistry , SARS-CoV-2/enzymology , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/metabolism , Virus Replication/drug effects
5.
Molecules ; 25(18)2020 Sep 07.
Article in English | MEDLINE | ID: covidwho-750655

ABSTRACT

On March 11, 2020, the World Health Organization (WHO) officially declared the outbreak caused by the new coronavirus (SARS-CoV-2) a pandemic. The rapid spread of the disease surprised the scientific and medical community. Based on the latest reports, news, and scientific articles published, there is no doubt that the coronavirus has overloaded health systems globally. Practical actions against the recent emergence and rapid expansion of the SARS-CoV-2 require the development and use of tools for discovering new molecular anti-SARS-CoV-2 targets. Thus, this review presents bioinformatics and molecular modeling strategies that aim to assist in the discovery of potential anti-SARS-CoV-2 agents. Besides, we reviewed the relationship between SARS-CoV-2 and innate immunity, since understanding the structures involved in this infection can contribute to the development of new therapeutic targets. Bioinformatics is a technology that assists researchers in coping with diseases by investigating genetic sequencing and seeking structural models of potential molecular targets present in SARS-CoV2. The details provided in this review provide future points of consideration in the field of virology and medical sciences that will contribute to clarifying potential therapeutic targets for anti-SARS-CoV-2 and for understanding the molecular mechanisms responsible for the pathogenesis and virulence of SARS-CoV-2.


Subject(s)
Antiviral Agents/therapeutic use , Betacoronavirus/drug effects , Betacoronavirus/immunology , Computational Biology , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Drug Discovery , Pneumonia, Viral/drug therapy , Pneumonia, Viral/immunology , Animals , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/transmission , Humans , Immunity, Innate , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/transmission , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL